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Abstract
The axion is a hypothetical elementary particle originally proposed as a solution to the strong

CP problem. Because the axion is associated with a pseudo-scalar field instead of a scalar field, it

has a nontrivial instanton solution, which has the form of a spherically symmetric wormhole. We

examine the perturbations about this instanton using a scalar-vector-tensor decomposition. The

vector modes are pure gauge, and therefore may be directly integrated. We compute the action for

the tensor modes and the spectrum is shown to be non-negative. We obtain the action of the scalar

modes using a transformation from the known action of a scalar field coupled to gravity. The scalar

mode spectrum is also shown to be non-negative, so the axionic wormhole instanton has no negative

modes. This discourages the interpretation of this instanton as a decay rate, and instead supports

the Coleman interpretation of this instanton as showing that the ground state is a superposition of

many-universe states.
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I. INTRODUCTION

One of the most important currently unsolved problems in physics is the strong CP

(charge-parity) problem. Quantum chromodynamics allows for violation of CP symmetry,

but no such violation is observed in nature, giving rise to a fine-tuning problem - if a violation

is allowed but not observed, then some parameter must be “tuned” to exactly or very close

to zero. The best way to explain such a fine-tuning is to show that the parameter was not

free after all, and that it is forced by some mechanism to take an exact value. The leading

solution to the CP problem was proposed by Peccei and Quinn in 1977, and consists of the

introduction of a new scalar particle called the axion [1]. Peccei and Quinn proposed a new

symmetry which would be spontaneously broken, such that it has the axion as its pseudo

Goldstone boson. (The axion must be a pseudo Goldstone boson because it acquires a small

mass from instantons, but a true Goldstone boson must be massless.) Because the axion has

a small mass and interacts only weakly with other matter, it has also become a candidate

component of dark matter [2].

The existence of an axion field has potentially strange consequences for cosmology. When

coupled to gravity, axions give rise to solutions to Einstein’s equation that suggest the

existence of either many-universe states or instability of the universe. This prompted worry

from theorists that, through decay of the universe, the axion may lead to non-conservation

of probability, baryon number, and other quantities that ought to be conserved [3]. In this

paper, we investigate the spectrum of one-loop fluctuations about the background instanton

and show that there is no negative mode, meaning that the instanton does not represent a

decay rate, and the worries are unfounded. Instead, these solutions represent the fact that

the ground state is a superposition of many-universe states.

The layout of the rest of this paper is as follows. Section 2 is a review of Euclidean

methods for semiclassical quantum gravity, which we will use to study the axion field. Section

3 introduces the wormhole solution obtained for an axion field coupled to gravity, and the

properties of this solution will be the focus of the rest of the paper. Section 4 introduces

the scalar-vector-tensor decomposition of perturbations about the solution and discusses

the vector perturbations. Sections 5 and 6 cover the tensor and scalar modes, respectively.

Finally, section 7 contains discussion and consequences of the results and section 8 is a

conclusion.
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II. SEMI-CLASSICAL QUANTUM MECHANICS AND GRAVITY

We begin with a summary of semi-classical quantum gravity, the framework we will use to

examine the gravitational effects of the instanton. Semi-classical quantum gravity is obtained

by naively quantizing general relativity and then applying a semi-classical approximation.

Because of this, its formalism is very similar to that of semi-classical quantum mechanics,

so we will first develop the latter theory.

Semi-classical quantum mechanics is naturally expressed in the path integral formulation

of quantum mechanics. The path integral formulation is a third way to present quantum

mechanics, alongside wave mechanics and matrix mechanics, in which systems essentially

take all paths in state space from one state to another (see fig. 1). To explain the formalism,

we will restrict our attention to a single particle moving in one dimension. The path integral

formulation postulates that the transition amplitude for the particle to travel from position

a at time ti to position b at time tf is given by a sum over all possible paths x(t) such

that x(ti) = a and x(tf ) = b. Each path is to be added with equal magnitude, but with

a phase proportional to the classical action of the path, S[x(t)]. This sum is represented

mathematically by a “path integral” as follows:

K(a, b; ti, tf ) = N

ˆ x(t
f

)=b

x(t
i

)=a

Dx e
i

~S[x(t)]
(1)

where N is a normalization constant that will not be important for our purposes. In the limit

that ~ ! 0, we may apply the stationary phase approximation to find that the dominant

contributions to this integral will be paths for which the classical action is stationary. This

gives rise to the equations of motion �S = 0 which, for a particle in space, are the Euler-

Lagrange equations. So we see that in the limit ~ ! 0, we recover the classical behavior

that we expect.

Now we will investigate the semi-classical limit. For ~ small but nonzero, we consider

the leading order corrections to the probability amplitude, which come from paths that

differ only infinitesimally from the classical path. Now that we have made our semi-classical

approximation, we will work in units where ~ = 1 to help declutter our equations. We

treat these almost-classical paths perturbatively, writing x(t) = xcl(t) + �x(t), where �x(t)

is infinitesimal and is equal to zero at the endpoints. We may expand the action in a series
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Figure 1. Schematic representation of the path integral. The path xcl is the classical path between

point a at time ti and point b at time tf . The paths x1 and x2 are also paths between these points,

which contribute to the probability amplitude. If these paths are infinitesimal perturbations of the

classical path, they will contribute to the semi-classical amplitude.

as:

S[x(t)] = S[xcl(t)] +
�S

�x
[xcl(t)]�x(t) +

1

2

�2S

�x2
[xcl(t)] (�x(t))

2
+O

�
(�x(t))3

�
(2)

We know that �S = 0 for a classical path, so the first order term vanishes, and we are left

with the second order term as the leading correction. We call

�2S
�x2 the quadratic action. Our

path integral becomes, assuming only one classical path:

K(a, b; ti, tf ) ⇡ N

ˆ x(t
f

)=b

x(t
i

)=a

D(�x) e
i
⇣
S[x

cl

(t)]+
´
dt 1

2
�

2
S

�x

2 [xcl

(t)](�x(t))2
⌘

(3)

For multiple classical paths, the amplitude is simply a sum over all of them.

Now that we are equipped with a semi-classical approximation, we want to investigate

tunneling phenomena. To do so, we must investigate solutions to the equation of motion

that are not considered in the other formulations of quantum mechanics [4]. In the same

way that integrals along the real line may be dominated by a saddle point elsewhere in the

complex plane, complex solutions to the equations of motion �S = 0 may provide dominant

contributions to the path integral. Information about tunneling is contained in the semi-

classical approximations about the complex solutions to �S = 0 that have finite action

(meaning that they do not tunnel through a thick infinite barrier) and are real functions of
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imaginary time, ⌧ ⌘ it. We call these solutions instantons and the transformation t ! �i⌧

is called a Wick rotation.

The classical action of our particle is given by:

S =

ˆ
dtd3x

"
1

2

✓
@�

@t

◆2

� V (�)

#
(4)

When we perform a Wick rotation, we change variables in the action to obtain:

S =

ˆ
�id⌧d3x

"
1

2

✓
@�

�i@⌧

◆2

� V (�)

#

= i

ˆ
d⌧d3x

"
1

2

✓
@�

@⌧

◆2

+ V (�)

#

⌘ iSE

where in the last line we have defined the Euclidean action. The word “Euclidean” refers to

the fact that Wick rotation replaces the time-like coordinate t with the space-like coordinate

⌧ , so that spacetime becomes Euclidean. The rotation made two important changes to the

action: the first is that it brought a factor of i out front, which will give a possibility

of convergence in the functional integral. The other change is the relative sign between

the kinetic and potential terms. This change makes it so that a particle in imaginary

time essentially sees the potential upside-down, giving rise to new classical solutions, the

instantons.

Let’s look at the probability amplitude in imaginary time:

KE(a, b; ⌧i, ⌧f ) = N

ˆ x(⌧
f

)=b

x(⌧
i

)=a

Dx eiS[x(⌧)]

= N

ˆ x(⌧
f

)=b

x(⌧
i

)=a

Dx e�S
E

[x(⌧)]

As promised, the integrand is now a decaying exponential instead of an oscillatory one,

so some integrals may now converge. In particular, let’s look at our semi-classical approxi-

mation about an instanton xcl(⌧):

KE(a, b; ⌧i, ⌧f ) ⇡ N

ˆ x(⌧
f

)=b

x(⌧
i

)=a

D(�x) e
�
⇣
S
E

[x
cl

(⌧)]+
´
d⌧ 1

2
�

2
S

�x

2 [xcl

(⌧)](�x(⌧))2
⌘

(5)
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The second term in the exponential is Gaussian, and we may, in fact, perform a Gaussian

integral here [4]. The result is:

KE(a, b; ⌧i, ⌧f ) ⇡ N
1q

det

0 � �2S
�x2

�e
�S

E

[x
cl

(⌧)]
(6)

where we write the determinant with a prime to denote the product of non-zero eigenvalues

of the operator

�2S
�x2 . Again, for multiple instantons, we sum this formula over all of them.

Now we will see how this tells us about semi-classical phenomena. We will switch to

bra-ket notation, in which

KE(a, b; ⌧i, ⌧f ) =
⌦
a | e�H(⌧

f

�⌧
i

) | b
↵

(7)

We may expand the right hand side in a complete set of eigenstates to find:

⌦
a | e�H(⌧

f

�⌧
i

) | b
↵
=

X

n

e�E
n

(⌧
f

�⌧
i

) ha | ni hn | bi (8)

Now if we take (⌧f � ⌧i) very large (i.e. we look at large imaginary times) the lowest energy

eigenstate dominates the sum, and we are able to obtain the ground state energy and wave

function as the leading term in the sum. In particular, we will see the effect of tunneling on

the ground state energy. Because we did not change the Hamiltonian, the Euclidean system

has the same energy eigenvalues as the system in real time, so we may use instantons to

learn about semi-classical effects of the real-time system. Recall that quantum tunneling lifts

the degeneracy of classical ground states by creating a ground state that is the symmetric

combination of the particle located in each ground state, while the first excited state is the

antisymmetric combination. The instanton gives the energy splitting between these two

lowest states as:

�E ⇠ 1q
det

0 � �2S
�x2

�e
�S[x

cl

(⌧)]
(9)

where we have omitted a constant normalization factor. See [4] for details of this calculation.

An example of a system in which this calculation may be applied is the double well potential

(see fig. 2).

Consider what happens if the quadratic action has exactly one negative eigenvalue. In

this case, the square root prefactor will be pure imaginary, and the ground state energy will

be complex. An imaginary part in the energy is interpreted as a decay rate, because of the

time evolution eiEn

t
. This is the case of metastable decay, where a quantum particle tunnels
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�E ⇠ 1q
det� � �2S

�x2

�e�S[xcl(�)] � ⇠ 1����
q

det� � �2S
�x2

�����
e�S[xcl(�)]

Figure 2. Two examples of potentials in which a nontrivial instanton exists for the quantum system.

In Euclidean time, the particle sees the potential upside-down, so new classical solutions exist. For

V1, the double well, the instanton begins at the bottom of the left well and rolls “down and up”

the middle hill, ending at the right well. The action of this instanton, along with the determinant

of its quadratic action, give the energy splitting of the two lowest states. The potential V2 is

metastable, and the instanton represents decay via tunneling. The instanton begins at the bottom

of the metastable well and rolls “down” to the right, stops at the classical turning point, and returns

to the well. Because of this out-and-back behavior, this instanton is called a bounce.

out of a finite potential well (see fig. 2). In this case, we have that the decay rate � is given

by:

� ⇠ 1����
q
det

0 � �2S
�x2

�����
e�S[x

cl

(⌧)]
(10)

Again, see [4] for details. There is always exactly one negative eigenvalue of the quadratic

action for instantons that represent metastable decay, and no negative eigenvalues for in-

stantons that represent tunneling between stable minima.

Now we transfer all of this formalism to semi-classical quantum gravity. We may extend

the path integral to a general quantum system by generalizing paths in physical space to

paths in the state space of the system, and by using the action appropriate to the system.
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To quantize a classical system, we simply use the classical action. This allows us to write

down a naive quantum theory of gravity that ultimately proves to be incorrect, but can be

used to investigate semi-classical effects. We take as our action the Einstein-Hilbert action

of general relativity along with the Lagrangian of any matter fields at play:

S =

1

16⇡G

ˆ
M

dtdx
p

�g (�R + Lmatter) (11)

where G is Newton’s constant, M is the space-time manifold under consideration, g is the

determinant of the metric gµ⌫ , R is the Ricci scalar, and Lmatter is the Lagrangian of the

matter fields. For variations of the metric that vanish and whose normal derivatives vanish

on the boundary of M , this action is stationary if and only if the Einstein equations are

satisfied. (In this work, we will not worry about boundary terms in the action or elsewhere.

Boundary terms serve only to maintain the boundary conditions, which we will instead

enforce by hand. They are also important when finding the value of the on-shell action

S[xcl], but we are not interested in that quantity here.) Our path integral is given by:

Z =

ˆ
Dgµ⌫D� exp (iS[gµ⌫ ,�]) (12)

There are multiple problems with this path integral. First, it is not convergent. This is

not enough to compromise its use, because the convergence of any path integral is dubious.

However, for all path integrals that we believe represent the real world, it is possible to tame

the divergence by introducing a finite number of parameters, which is called renormaliza-

tion. However, if we expand the above integrand in a Taylor series, each order introduces

more divergent terms. The divergences cannot be tamed by introducing a finite number of

parameters, meaning that our candidate theory of quantum gravity is non-renormalizable.

This makes it unacceptable as a quantum field theory describing physical reality. However,

we may trust the path integral up to second order in the action, so that we may use it for a

semi-classical approximation, which is valid for scales much larger than the Planck length,

and for curvatures with associated radii much larger than the Planck length.

The instanton formalism carries through in its entirety from quantum mechanics to quan-

tum gravity, but now an instanton is a solution to the Einstein equations, i.e. a metric for a

universe, called a gravitational instanton. A gravitational instanton must have finite action,

like an instanton in quantum mechanics, and it must be asymptotically Euclidean, meaning

that it must approach flat space in the far past and far future. A negative mode about a
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gravitational instanton represents an instability of the universe itself. The most well-known

gravitational instanton is the Coleman-de Luccia instanton, which has a negative mode

describing the instability of a metastable false vacuum [5].

III. THE EUCLIDEAN WORMHOLE SOLUTION

Now we use the semi-classical techniques developed above to investigate the gravitational

effects of an axion field. The axion field is naturally expressed using a three-form field

strength Hµ⌫�. However, we will work with the local potential � instead, defined by ⇤H = d�,

where ⇤ is the Hodge-dual. This makes � a pseudo-scalar field. The Euclidean action for an

axion field � coupled to gravity is given by:

S =

1

2

ˆ
d⌧d3x

p
g (�R � (rµ�)(rµ�)) (13)

where  = 8⇡G. The sign of the kinetic term is opposite that of a standard scalar field in

Lorentzian metric. This is because � is a pseudo-scalar field instead of a scalar field, and

psuedo-scalar fields change sign under Wick rotation [6].

Given this action, we search for an instanton by looking for a solution of the classical

equations of motion that is asymptotically Euclidean. To simplify our derivation, we will

use the spherically symmetric ansatz:

ds2 = a2(t)
�
dt2 + d⌦

2
3

�
(14)

where d⌦

2
3 is the metric on a 3-sphere. We vary our action with respect to g and � to

obtain the Einstein equations and the scalar field equation of motion, into which we plug

our ansatz. The Einstein equations become:

ä � a

✓
1 +

1

12

˙�2

◆
= 0

ȧ2 � a2
✓
1 +

1

12

˙�2

◆
= 0

and the scalar field equation is:

¨�2
+

˙�2

✓
4 � 1

3

˙�2

◆
= 0 (15)

where the dot denotes derivatives with respect to ⌧ . We may eliminate

˙� in the Einstein

equations to obtain a differential equation for a, which reads:

äa+ ȧ2 � 2a2 = 0 (16)
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We will solve this equation along with asymptotically flat boundary conditions, which say

that as ⌧ ! ±1, the metric approaches that of flat space: ds2 = d⇢2 + ⇢2d⌦2
3. The general

solution to our ODE is:

a(⌧) =
p
c1e2⌧ + c2e�2⌧

(17)

As ⌧ ! 1, this approaches the form a(⌧) ! p
c1e⌧ , and as ⌧ ! �1 this approaches the

form a(⌧) ! p
c2e�⌧

. We can see that these both represent flat space via the coordinate

transformations ⌧ = ± log ⇢. We therefore have both constants free. However, one of them

is redundant, because we may rescale our ⌧ coordinate such that c1 = c2. Define r ⌘ p
c1.

We then find:

a(⌧) = r
p
2 cosh 2⌧ (18)

so that our metric takes the form:

ds2cl = 2r2 cosh(2⌧)
�
d⌧ 2 + d⌦

2
3

�
(19)

This instanton looks like a wormhole (see fig. 3). It connects two asymptotically flat

universes, which would be classically degenerate ground states for this system. The reader

should keep in mind that this is a wormhole in imaginary time, and therefore not a physical

solution, so a question such as “could one traverse this wormhole?” does not make sense.

Because there are two fields, guv and � in our action, an instanton consists of a configura-

tion of both fields. Our equations of motion allow us to find the instanton value of the axion

field from our knowledge of a(⌧). We solve for

˙�2
in our first Einstein equation to find:

˙�2
= 12

✓
ä

a
� 1

◆

= 12sech

2
(2⌧)

which we may integrate to find:

�cl(⌧) =
p
12 arctan tanh ⌧ (20)

This function is plotted in fig. 4.

The most important question in the interpretation of this instanton is whether or not it

has exactly one negative mode. This instanton represents tunneling between disconnected

universes, but it is not clear from the solution itself whether the universes are stable or

metastable states. If the instanton has exactly one negative mode, then one of the states is
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⌧ !

� r

Figure 3. A schematic representation of the instanton metric, which resembles a wormhole. Two

dimensions are suppressed in this picture; the constant ⌧ cross sections are actually 3-spheres.

The wormhole connects two asymptotically flat regions, which classically would be disconnected

degenerate ground states. The minimal radius of the throat of the wormhole is a free parameter r.

-4 -2 2 4

-2

-1

1

2

⌧

�cl(⌧)

Figure 4. A plot of the instanton configuration of the axion field. This field configuration accompa-

nies the wormhole configuration of the instanton metric. As is typical for an instanton, the axion

field asymptotes to constant values for ⌧ ! ±1 and undergoes a sharp transition in between (this

is what gives rise to the name “instanton”).

11



actually metastable, and the universe would decay with a rate � given by the action of the

instanton. We will now investigate this question using perturbation theory and show that

there is no negative mode, so that the tunneling is between stable states and there is no

decay.

IV. DECOMPOSITION OF PERTURBATIONS

To understand the interpretation of our instanton, we need to examine the spectrum

of its quadratic action. To derive the quadratic action, we consider perturbations of our

action, i.e. the effect on the action of the transformations g ! g + �g and � ! � + ��,

where �g and �� are small. The metric perturbation �g can be an arbitrary tensor, but we

will simplify our work by decomposing �g into scalar, vector, and tensor components. Using

the representation theory of SO(3), any tensor can be split into scalar, vector, and tensor

modes that do not mix to linear order (in our case, to first order in ~) [7]. This is because

the tensor representation of SO(3) is reducible, and may be decomposed as a direct sum

of irreducible representations, which may be thought of as scalars, transverse vectors, and

trace-free, transverse, symmetric tensors.

We begin by splitting our perturbation into scalar, vector, and tensor parts, so that we

may write our perturbed line element as:

�g = a2(t)
�
(1 + 2A)d⌧ 2 + Sidx

i
d⌧ + [�ij + hij] dx

i
dxj

�
(21)

where A,B, and  are scalar fields, Si is a vector field, hij is a tensor field, and i, j run over

spatial indices. We must further decompose our vector field into its divergence (a scalar)

and a transverse vector, i.e. a vector that satisfies riV i
= 0 (where the divergence is with

respect to the spatial metric). We then have:

Si = riB + Vi (22)

where B is a scalar and Vi is a transverse vector. Additionally, we decompose our tensor field

into tensor field into a trace part, a scalar part, a transverse vector part, and a transverse,

trace-free, symmetric tensor part. This looks like:

hij = �2 �ij + 2rirjE + 2r(iFj) + tij (23)
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where  and E are scalars, Fi is a transverse vector, tij is a transverse, trace-free symmetric

tensor, and subscripts in parentheses denotes symmetrization. We have now decomposed

our tensor metric perturbation into four scalars, two transverse vectors, and one transverse,

trace-free tensor. A 4⇥ 4 symmetric tensor has ten degrees of freedom, so we should ensure

that we still have as many. Each scalar contributes one degree of freedom. Each transverse

vector is three degrees of freedom with one constraint, so two degrees of freedom total. A

symmetric 3⇥ 3 tensor has six degrees of freedom, and transverse and trace-free conditions

give four constraints, so this has two net degrees of freedom. In total we have: 4+2·2+2 = 10

degrees of freedom, just like we ought to.

Because the scalar, vector, and tensor parts of the perturbation do not mix to first order,

we may investigate the spectrum of the quadratic action by separately inspecting each of

these three parts. The simplest is the vector part. Like electromagnetism, gravity has gauge

freedom. But while electromagnetism has just one gauge degree of freedom, corresponding to

a phase angle, gravity has four gauge degrees of freedom, corresponding to the choice of four

functions that determine the coordinates on the four dimensional manifold of spacetime.

In our problem, it turns out that two of these redundant degrees of freedom are in the

vector part of the perturbations. This has the effect of making Vi a Lagrange multiplier,

meaning that Vi only appears linearly in the quadratic action. This allows us to integrate

over Vi, giving a delta functional that serves to enforce the momentum constraints, which

are components of Einstein’s equation that provide constraints on the perturbations. We

may then use the delta functional to perform the Fi integral as well (after introducing the

canonical momentum conjugate to Fi), and end up with a number called the gauge orbit

volume. See appendix B of [8] for details of this calculation.

Because the vector path integral could be explicitly computed, the vector perturbations do

not contribute any eigenvalues. In particular they do not contribute any negative eigenvalues.

We now move on to the tensor and scalar modes.

V. TENSOR MODES

We will next consider the tensor modes, for which the metric perturbation is given by:

�gT = tijdxidxj (24)
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where tij is a transverse, traceless tensor. To derive the second order action resulting from

this perturbation, we plug the above form into our equation for the action and expand the

result to second order. This calculation is done in [8] for a scalar field coupled to gravity.

Because the axion field perturbation is a scalar mode, it does not enter into the quadratic

action for tensors, so the tensor quadratic action is identical for a scalar field and for an

axion field. We therefore write down the quadratic action for a scalar field obtained in [9]:

S2,T =

1

8

ˆ
d⌧d3x

p
�a2

⇥
h0ijh0

ij + rihjkrihjk + 2hijhij

⇤
(25)

where a(⌧) is the conformal factor from the instanton metric, � is the determinant of the

background metric on the 3-sphere, and covariant derivatives and contractions are with

respect to this metric.

We want to diagonalize this action to search for negative modes. To do so, we first rescale

our perturbations using

˜hij = ahij, which gives us

rih
ij
= ri

˜hij

ah0ij
=

˜h0ija � a0˜hij

a

We plug these into our action and integrate by parts to find:

S2,T =

1

8

ˆ
d⌧d3x

p
�˜hij

✓
� d

dt2
+

a00

a
� �3 + 2

◆
(26)

We write this as:

S2,T =

1

8

ˆ
d⌧d3x

p
�˜tij

h
ˆU � �3 + 3

i
˜tij (27)

where

ˆU = � d2

d⌧ 2
+

a00

a
� 1 = � d2

d⌧ 2
+ sech

2
(2⌧) (28)

We recognize this as a Schrodinger operator. Because

ˆU acts only on ⌧ and ��3 acts only

on spatial variables, the two operators commute, so we may find their spectra separately

and add them. To search for eigenfunctions of

ˆU , we need boundary conditions. We may

use our knowledge of Schrodinger operators to note that an eigenfunction of a negative

eigenvalue will, at infinity, take values less than that of the potential, and will therefore be

a real exponential. We want the well-behaved solution, which is exponential decay. So we

see that our boundary condition is that the eigenfunction approaches zero as ⌧ ! ±1.
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The “potential function” sech

2
(2⌧) is strictly positive, and therefore

ˆU has strictly positive

eigenvalues for solutions that approach zero as ⌧ ! ±1, as is well known from quantum

mechanics. The tensor Laplacian ��3 has eigenvalues l(l + 2) � 2, for integers l � 2 [10].

In particular, the smallest eigenvalue is 6. We therefore see that the tensor quadratic action

has no negative modes. Now we move on to the scalar modes.

VI. SCALAR MODES

The scalar mode perturbations are given by:

�gS =

�
�(1 + 2A)dt2 + riB dxi

dt+ ( �ij + rirjE) dxi
dxj

�
(29)

The second order action for scalar mode perturbations of a scalar field coupled to gravity in

Lorentzian spacetime is derived in [11]. Gauge degrees of freedom are removed, so that the

action may be written in terms of one physical scalar variable q in the form:

iS2,S = � i

2

ˆ
dtd3x

p
�

⇣
(�3 + 3)q

⇣
ˆO0

+�3 + 3

⌘
q
⌘

(30)

where:

ˆO0
= � d

dt2
+

1

2

(�0
0)

2
+ �0

0

✓
1

�0
0

◆00

(31)

From this formula, we may obtain the Euclidean action for an axion field coupled to gravity

by Wick rotating time and analytically continuing �0 ! i�0 and �3 ! ��3. We then find:

SE =

1

2

ˆ
d4x

p
�

⇣
(��3 + 3)q

⇣
ˆO � �3 + 3

⌘
q
⌘

(32)

where

ˆO = � d2

d⌧ 2
� 1

2

(�0
0)

2
+ �0

0

✓
1

�0
0

◆00

(33)

We plug in our value for the background field to find:

ˆO = � d2

d⌧ 2
+ 4 � 6sech

2
(2t) (34)

Again,

ˆO and ��3 commute, so we may compute their spectra separately and add them.

We know that ��3 has no negative eigenvalues, so we will search for negative eigenvalues of

ˆO. As in the case of the tensor modes, our boundary conditions are that the eigenfunction

approaches zero as ⌧ ! ±1.
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Our differential equation is:

✓
� d2

d⌧ 2
+ 4 � 6sech

2
(2t)

◆
f = �f (35)

First, we perform a change of variables to ⌧ 0 = 2⌧ . We then have (moving the constants

into the eigenvalue): ✓
� d2

d⌧ 02
� 3

2

sech

2
(⌧ 0)

◆
f = �0f (36)

where �0 = �/4 � 1. This differential equation has an analytical solution given by:

f(⌧ 0;�0) = c1P
i
p
�0

1
2 (

p
7�1)

(tanh ⌧ 0) + c2Q
i
p
�0

1
2 (

p
7�1)

(tanh ⌧ 0) (37)

where P b
a is the associated Legendre polynomial of the first kind and Qb

a is the associated

Legendre polynomial of the second kind. We now expand f about ⌧ 0 = 1 to enforce our

boundary condition. To simplify notation, let �0 = �⇤, where ⇤ > 0, and let x ⌘ tanh ⌧ 0.

Note that x ! 1 as ⌧ 0 ! 1. If we expand about x = 1, we find that:

f(x,⇤) = c2

2

4
i⇡2

2

p
⇤
2 e

3
2 i⇡

p
⇤
sec

⇣
1
2⇡

⇣p
7 � 2

p
⇤

⌘⌘

�
�1 + e2i⇡

p
⇤
�
�

⇣
1 �

p
⇤

⌘
�

⇣p
⇤ �

p
7
2 +

1
2

⌘
�

⇣
1
2

�
1 +

p
7

�
+

p
⇤

⌘

3

5
(x�1)

�
p
⇤/2

+O(1)

(38)

To enforce our boundary condition, we demand that the coefficient of the leading order

term approach zero as x ! 1. The coefficient term in the bracket, which we call K1(⇤),

has no zeros for positive ⇤ (see fig. 5), and we therefore conclude that c2 = 0. With this

assumption, we expand f about x = �1 to find:

f(x,⇤) = c1

2

4
⇡2

p
⇤
2
csc

⇣
⇡
p
⇤

⌘

�

⇣
1 �

p
⇤

⌘
�

⇣p
⇤ �

p
7
2 +

1
2

⌘
�

⇣
1
2

�
1 +

p
7

�
+

p
⇤

⌘

3

5
(x+ 1)

�
p
⇤/2

+O(1)

(39)

This coefficient function, which we call K2(⇤), has exactly one zero (see fig. 5), given by

⇤ =

1
2(4�

p
7) ⇡ 0.68. This then gives us that the single negative eigenvalue of

ˆO with our

boundary conditions is:

� = �4⇤+ 4 = �1

2

(4 �
p
7) + 4 ⇡ �0.29 (40)

Now we consider the other terms in our second order action. The constant +3 pushes up

the spectrum so that all eigenvalues are positive. The scalar Laplacian on the 3-sphere has

eigenvalues l(l + 2) beginning at l = 0, which are all non-negative [10]. Therefore we see

that the second order action for scalar modes has a strictly positive spectrum, and we have

proven that there are no negative modes about the axion wormhole instanton.
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Figure 5. Plots of the coefficient functions used in the determination of boundary condition im-

plications for the eigenfunction. The coefficient K1(⇤) has no zeros for positive ⇤, forcing the

constant c2 = 0. The coefficient K2(⇤) has exactly one zero for positive ⇤, corresponding to the

lone negative eigenvalue of Ô.

VII. DISCUSSION

When the axionic wormhole instanton was first discovered, theorists worried that the

instanton represented an instability of the universe, which would cause parts of the universe

to split off as disconnected baby universes, carrying their contents with them and ruining

conservation laws [3]. These fears were premature, as the spectrum of the instanton had

not been computed. In [13], a counterargument was presented to these views, and it was

conjectured (but not proved) that the wormhole instanton has no negative modes. Our work

provides the evidence to defend this claim.

A previous study of the axionic wormhole instanton claimed to have discovered a single

negative mode using the method of homogeneous truncation of the perturbations [14][15].

This means that only homogeneous perturbations were considered, and used as a proxy

for the full set of perturbations. Our results show that this method did not give valid

information about the instanton. This is because the truncation comes before fixing the
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gauge, and therefore prevents one from fixing all gauge degrees of freedom. It is therefore

likely that the negative mode found by this method actually comes from one of the unfixed

gauge degrees of freedom.

Because of the positivity of the spectrum about the instanton, we are led to interpret

it as mediating tunneling between stable, classically degenerate ground states. This means

that the quantum ground state will be a superposition of these classical ground states,

as in the double well. However, to understand the true ground state, we must consider

variations of our wormhole instanton. First of all, the wormhole may connect any part of

one of the asymptotic regions to any part of the other, meaning that we must integrate

over the location of each end of the wormhole. Second, it may connect the universes at any

time, meaning that we must integrate over the instant at which the universes are connected.

Finally, there are more instantons that may be thought of as multiple copies of our wormhole

instanton. This includes multiple wormholes between two asymptotic regions, or multiple

wormholes connecting several asymptotic regions. These multiple-wormhole solutions must

also be integrated over space and time. When we consider the contribution of all of these

instantons, the ground state becomes a superposition of many-universe states, containing

an infinite number of states with each number of universes (see fig. 6).

Although the universe is not unstable with this interpretation, there are still strange

cosmological effects. Particles and information may tunnel from one classical ground state

to another, apparently destroying conservation laws. This situation is remedied if we assume

that the universe is in an equilibrium so that any conserved quantity tunnels away at exactly

the same rate that it tunnels back, allowing conservation laws to be retained on average.

However, the return tunneling does not need to be the same individual particle, for example,

so in one asymptotic region, it may appear that a particle disappears from one location and

reappears instantaneously at another location, possibly space-like separated [16]. This gives

rise to nonlocal operators in the action, of the form:

S =

1

2

X

i,j

ˆ
dxdy Oi(x)CijOj(y) (41)

Luckily, when these operators are exponentiated in the path integral, which provides the

only physical manifestation of these operators, we can write:

e�S
=

ˆ
d↵i e

� 1
2↵i

(C�1)
ij

↵
je�

´
dx ↵

i

O
i

(x)
(42)
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Figure 6. A schematic diagram of the ground state of the universe with an axion field coupled

to gravity. The ground state is a superposition of many-universe states, which are obtained by

considering many-wormhole instantons. Each term in this “sum” actually has an infinite number of

terms, consisting of universes with different numbers and placements of wormholes.

where we have introduced coupling constants ↵i via a Gaussian integral. In the exponential,

we see only local operators. But we have paid a price, because the ↵i are integrated over,

meaning that the coupling constants of nature have become random. While acceptable in

principle, this result leads to paradoxical effects in the theories in which it is relevant [6].

VIII. CONCLUSIONS

We have shown that there exists a wormhole-like instanton for an axion field coupled

to gravity, which mediates tunneling between classical degenerate universes. We proved

that this instanton has no negative modes, so that it should be interpreted as conveying

information about the superposition of the quantum ground state, as opposed to information

about metastable decay. While this resolves the formerly worrisome problem about loss of

quantum coherence due to axions, it raises new questions regarding randomness of the

fundamental constants, which is an avenue for future research in gravitational effects of

axions.

While theorists have been puzzling over these questions of axion effects, experimentalists
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have been at work searching for axions in our universe, notably through the ADMX project,

motivated primarily by the possible role of the axion in dark matter. It is possible that we

will soon discover axions in the real world, and the resulting data will give quite a different

flavor to the question of the theoretical effects of axions on our universe. But now that we

have shown that the axion has no negative mode, so that it cannot decay our universe, we

have nothing to fear.
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