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1 Introduction

Today I’m going to talk about BRST cohomology and how it relates to gauge
theory and cohomological field theory. The original inspiration for this talk was
trying to understand the relation between BRST cohomology in gauge theories
like the Standard Model and the “BRST-like” operators in topological sigma
models, or more generally, in cohomological field theories. We will begin with a
brief description of equivariant cohomology, the mathematical idea that unifies
the two apparently different roles of BRST operators in physics. Then we’ll
talk about BRST cohomology in classical gauge theory, followed by the role of
BRST in cohomological field theories.

I’ll quickly review the idea of (co)homology because it will be central to the
talk. Say we have a sequence Ai of abelian groups along with group homomor-
phisms di : Ai ! Ai+1 that satisfy di � di�1 = 0. (Often we suppress the index
on di.) Then We call (Ai, di) a cochain complex. The condition on di tells us
that imdi�1 ⇢ ker di. The failure of inclusion in the other direction is called the
cohomology of the complex:

Hi(d) = ker di/imdi�1

We call it “homology” instead of cohomology when the differential decreases the
degree by one instead of increasing it by one. In this case we denote it by @i

and call it a boundary. We also lower the index on the complex and homology
to Ai and Hi.

The most familiar examples of this algebraic constructions are the homology
and cohomology of smooth manifolds. The deRham cohomology comes from
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the the complex of differential forms (⌦⇤(M), d) with the exterior derivative,
while the singular homology comes from the complex of chains (C⇤(M), @) with
the boundary map.

It is common that a cohomology theory has many “models”, i.e. many chain
complexes that share the same homology. For example, the cohomology of a
smooth manifold may be calculated either by the deRham complex we just dis-
cussed, or by the complex of singular cochains, which looks superficially quite
different. The equivariant cohomology we discuss below has many model cochain
complexes, several of which are popular in the literature, which means transla-
tion is sometimes required.

2 Unifying Principle: Equivariant Cohomology

I wanted to give this talk because I wanted to understand the link between
BRST methods in gauge theories and in cohomological field theory. It turns
out that the unifying idea is “equivariant cohomology”. The idea is to compute
the cohomology of not just a manifold, but a manifold with an action by a Lie
group G.

The simplest definition of equivariant cohomology would be as the cohomol-
ogy of the quotient space:

H⇤
G(M)

?
= H⇤(M/G)

The problem is that when the action of G on M has fixed points, i.e. when
the action is not free, M/G will have singularities, making it difficult to define
cohomology of the quotient space. The solution to this problem is to modify
the space so that the action becomes free.

To do so, we will use the universal bundle EG of G. This is a special
topological space that is contractible and acted upon freely by G. This gives
EG the structure of a G-principal bundle ⇡ : EG ! BG, and the base BG of
this bundle is called the classifying space for G. The space BG is unique up to
homotopy type, and the space EG is unique up to equivariant homotopy type.

Because G acts freely on EG, this lets us modify our G-action on M to
remove the fixed points: we’ll consider instead the diagonal G-action on EG⇥M ,
which is guaranteed to be free. Thus the quotient of EG⇥M by G is a manifold.
We’ll denote this space as EG⇥G M . Because EG is contractible, EG⇥M is
homotopy equivalent to M , so the modification we have made will not affect
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cohomology. We define the topological equivariant cohomology of G � M to be

H⇤
G,top(M) = H⇤ (EG⇥G M)

There are a few algebraic models of equivariant cohomology that give equiv-
alent results to the topological formula just given. Three of these models are
popular in the literature:

1. The Weil model, which is a cochain complex meant to algebraically rep-
resent connections and curvature on EG

2. The Cartan model, which is a cochain complex of equivariant differential
forms on M with an equivariant exterior derivative

3. The BRST model, which is a sort of hybrid of the last two: it takes the
cochains of the Weil model but modifies the differential so that it coincides
with that of the Cartan model when restricted to the correct subspace

Of course, the BRST model is the one that arises naturally in physics applica-
tions. Now we’ll move on to discuss the appearances of BRST cohomology in
physics.

3 BRST in Classical Gauge Theories

First, we’ll talk about the BRST method in classical gauge theories. We’ll start
by showing the problem we want to solve and the way that a BRST operator
solves it, and then explain the relation to equivariant cohomology. The classical
BRST procedure is similar to quantum gauge theories, where we are familiar
with BRST quantization. Although we aren’t used to seeing BRST in classical
theories, it is an elegant way to isolate the gauge invariant part of the theory.

Say we have a gauge theory with gauge group G. Then the phase space P is
redundant, so that the physical phase space is given by a constraint surface ⌃ =

{gi = 0} ⇢ P . Examples of such constraints include Gauss’s law in E&M and
the Hamiltonian constraint in general relativity. (We will assume throughout
that our constraints are “irreducible” for simplicity.) The intuitive solution to
the redundancy is to work directly with the quotient P/G. This goes by the
name of “symplectic reduction”, or in more general cases “coisotropic reduction”.
There are a few problems with the straightforward implementation of symplectic
reduction in gauge theories:
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1. It usually sacrifices manifest locality and Lorentz invariance

2. The quotient space may have singularities

3. It may be impossible to actually compute the quotient, as this requires
explicit solution of the PDEs coming from the constraints

To sidestep these problems, we will implement an algebraic approach to symplec-
tic reduction that goes by the name of BRST cohomology. Instead of shrinking
the phase space, our solution will be to extend the phase space and then perform
a homological operation by which the introduced degrees of freedom “cancel” the
unphysical gauge degrees of freedom. Because of this, we may work with func-
tions defined on the original phase space, so that we retain all the advantages
of our original formulation. This is the BRST procedure, and the extra degrees
of freedom are called ghosts and ghost momenta.

The reduction to the physical part of phase space consists of two steps:

1. Restrict from functions C1(P ) on phase space to functions C1(⌃) on the
constraint surface

2. Restrict to functions that are gauge invariant, i.e. constant along gauge
directions away from the constraint surface

To accomplish the first step, we create a homological resolution of C1(⌃) by
C1(P )-modules. This means a chain complex of C1(P ) modules such that the
homology vanishes except in degree zero, where it is C1(⌃). The point of this
is so that we can continue to work with functions on the entire phase space.
(This is analogous to working with a presentation of a group.) So we want to
create a chain complex with boundary map � such that H0(�) = C1(P ) and
Hk(�) = 0 for k 6= 0. We will do this not by finding a sequence of different
algebras, but instead by creating a superalgebra containing C1(P ) and giving
it a grading. The relation between the two algebras of functions is fairly simple:
C1(⌃) ⇠= C1(P )/N , where N is the ideal of phase space functions that vanish
on ⌃. So we want to satisfy

H0(�) =
ker �0
im�1

=
C1(P )

N

thus we choose � such that ker �0 = C1(P ) and im�1 = N . To satisfy the first
condition, we choose �zA = 0 for all phase space coordinates zA. Then �F = 0

for any phase space function F (zA) because � is a derivation. This means that
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we assign all phase space variables zA degree zero. We will call the degree in
this complex the “antighost number”.

Now we want to achieve im�1 = N . It is a fact that any element of N can
be written as a linear combination of the constraint functions with coefficients
that are phase space functions. Thus we will introduce generators Pi into our
algebra, one for each constraint gi, and declare �Pi = gi. To get the correct
grading, we choose antighPi = 1 and we take Pi to be an odd element of the
algebra so that � is an odd derivation. So our algebra is C[Pi]⌦C1(P ). WHY?

To enforce gauge invariance, we introduce the “longitudinal derivative” d.
A vector field on the constraint surface is said to be “longitudinal” if it is ev-
erywhere tangent to the gauge orbits. These are the vector fields associated to
infinitesimal gauge transformations:

XiF = {F, gi}

We define longitudinal p-forms as forms that act on longitudinal vectors. These
may be represented as polynomials in the 1-forms ⌘i dual to the vector fields
Xi, with coefficients that are smooth functions on ⌃, so that the longitudinal
algebra is C1(⌃) ⌦ C[⌘i]. We will call the ⌘i “ghosts”. The form degree is the
pure ghost number, so we have

pure gh(⌘i) = 1, pure gh(zA) = 0

We may define a longitudinal derivative d that acts on longitudinal p-forms. On
our basis of 1-forms, this looks like

dF = (@aF )⌘a

d⌘a =
1

2
!b!cC a

cb

where C a
cb are the structure constants of the Lie algebra. We take cohomology

of this derivative, and we have in particular that H0(d) is the space of gauge
invariant functions on ⌃. In fact, we may extend the longitudinal forms, as well
as the derivative, to all of phase space by taking the coefficients to lie in C1(P ).
However, now we only have d2 ⇡ 0, meaning that it is zero only modulo the
constraint functions. This will be remedied by the BRST operator.

Now it’s time to combine these algebras into one. We take the ghosts and
ghost momenta to be canonically conjugate variables, and to have trivial bracket
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with the phase space variables. Then we have an extended phase space with
the ghosts and momenta added, and we take the algebra of superfunctions on
extended phase space as

C[Pi]⌦ C1(P )⌦ C[⌘i]

We extend the degrees as antigh(⌘i) = 0 and puregh(Pi) = 0. Then the “ghost
number” is defined for any variable on phase space as

ghA = pureghA� antighA

Thus

ghza = 0

gh⌘i = 1

ghPi = �1

There is a canonical generator of the ghost number:

G = i⌘iPi

so that
{A,G} = i(ghA)A

We extend the resolution boundary operator � to extended phase space by
defining �⌘i = 0. So � has antighost number �1. We require that d has antighost
number 0 and total ghost number 1. Then we take

dPi = ⌘jC k
ik Pk

which gives us
[�, d] = 0

This also gives us that d2 is �-exact.
Now the ghosts ⌘i are �-closed but not �-exact, so the homology of � in

C[Pi]⌦C1(P )⌦C[⌘i] is given by the original homology of � tensored with the
ghosts: H0(�) = C1(⌃)⌦ C[⌘i], Hi(�) = 0 for i > 0. Thus � gives a resolution
of the exterior longitudinal algebra. Then the cohomology of d modulo � is the
cohomology of the longitudinal derivative restricted to ⌃.
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Now we finally come to BRST: the main theorem of homological perturba-
tion theory tells us that in the situation we have constructed, there exists a
differential s = � + d + more of total ghost number 1 such that s2 = 0 and
Hk(s) = Hk(d). In other words, we can find a differential on the resolution that
replicates our desired cohomology. There is ambiguity in constructing s, but we
can reduce the ambiguity and achieve something useful by requiring s to be a
canonical transformation: we may find a fermionic function ⌦ such that

sx = {x,⌦}

for any x in the BRST complex. Then s is unique up to a canonical change of
variables. The function ⌦ satisfies {⌦,⌦} = 0 by the Jacobi identity.

With the introduction of BRST cohomology, we have solved our problem.
Representatives of the cohomology classes allow us to work with our original
phase space, and taking cohomology classes transports us to the physical part
of the theory. The price we’ve had to pay is extending phase space to include
ghosts and their momenta. But that’s not so bad, is it?

You may have been wondering: how is all this related to equivariant coho-
mology? The answer is a bit messy, but from a bird’s eye view, it makes sense.
First, we’ll have to realize that the cohomology of the longitudinal derivative
was secretly a geometrical model of Lie algebra cohomology. In fact, mathemat-
ical treatments of BRST generally begin with an algebraic model for Lie algebra
cohomology and skip the longitudinal geometry entirely. Here’s the main point:
the equivariant cohomology of a Lie algebra g turns out to be the same as su-
persymmetrized Lie algebra cohomology of a corresponding graded Lie algebra
g
super

. The relation to the classical gauge theory case just described is a bit
fuzzy to me still. In this case, the algebra of the ghosts and their momenta at
a point furnish the exterior algebra of the Lie algebra, while the “super” part
comes from promoting them to be differential forms on the constraint surface.
This might not be exactly correct, but it’s something along these lines.

4 BRST in Cohomological Field Theory

Now we’ll move on to cohomological field theory, which is a type of topological
field theory. These are field theories that are not manifestly topological, but in
which we can identify a nilpotent operator Q such that physical observables are
Q-cohomology classes and physical amplitudes are metric dependent because
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Q-exact degrees of freedom decouple. One of the most famous cohomology field
theories, and the one I’m most interested in, is the topologically twisted sigma
model.

The paradigm for cohomological field theories is that their observables com-
pute intersection theory of moduli spaces via physical methods. The moduli
space takes the form

M = {� 2 C : D� = 0} /G

where C is a space of fields, D is a differential operator, and G is a group of
local transformations. Notice that this has a similar form to the physical phase
space that we wanted to isolate in gauge theories. Because of this structure,
a cohomological field theory is specified by fields, equations, and symmetries.
The fields are a choice of chain complex. The equations single out interesting
parts of the space of fields. The symmetries are typically an infinite dimensional
Lie group that can be thought of as a gauge group. One example is Donaldson
theory, where C is the space of connections on an SU(2)-vector bundle, D is
the anti-self dual instanton equation, and G is the gauge group. The observ-
ables of Donaldson theory computes intersection theory on the moduli space
of ASD instantons, and it turns out that these intersection numbers character-
ize differentiable structures on 4-manifolds. Other examples of moduli spaces
include monopoles, metrics, and holomorphic maps. These spaces are gener-
ally finite dimensional, noncompact, and singular. To define a field theory, we
need to compactify the moduli space and deal with the singularities. This is
mathematically challenging and we won’t talk about it today.

The connection to equivariant cohomology is fairly straightforward, unlike
in the gauge theory case. The BRST operator in a topological field theory is
the differential for a model of G-equivariant cohomology on a space of fields. In
topological field theory, G is typically infinite dimensional.

Let’s talk about the topological sigma A-model as an example, since that is
one of the theories that inspired this talk. Let ⌃ be a surface with a metric h

that induces a complex structure ✏ and X be an almost Kahler manifold with
symplectic form ! and almost complex structure J . Then the space of fields
of the A-model is C1(⌃, X), the equations are those for pseudo-holomorphic
curves: df+Jdf✏ = 0, and the symmetries are trivial. Then we study differential
forms on C1(⌃, X), and compute intersection numbers (whose integrals localize
to the pseudo-holomorphic curves). The BRST cohomology in this case will
restrict our integrals over the space of maps to integrals over the space of pseudo-
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holomorphic curves.
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